Новые технологии | Надежность и энергопортебление систем светового ограждения мачт
28.03.2013
Башни и мачты объектов связи, согласно международным и российским требованиям по авиационной безопасности ICAO (International Civil Aviation Organization) и МАК (Межгосударственный авиационный комитет) должны быть оборудованы заградительными огнями. С ростом числа базовых станций операторов увеличиваются затраты на их оснащение и обслуживание. Что вызывает необходимость переоценки эффективности и целесообразности применения ранее разработанных систем светоограждения.
Обычно система светового ограждения включает в себя: заградительные огни (ЗОМ), устройство защиты от перенапряжения, устройство контроля состояния ламп, инвертор DC/AC, источники питания.
Основным элементом систем светоограждения, определяющим их характеристики (энергопотребление, надежность, эксплуатационные расходы и стоимость оборудования) является источник света. в соответствии с принятым государственной думой законом об энергоэффективности, в России с 2011 года вступил запрет на продажу и производство ламп накаливания мощностью свыше 100 Вт. Аналогичный запрет на лампы мощностью выше 75 Вт вступит с 2013 года, полностью производство будет прекращено в 2014 году. В настоящее время операторы связи проводят замену ламп накаливания на светодиодные, что позволяет значительно снизить эксплуатационные расходы в связи с низким потреблением энергии и длительным сроком службы светодиодных ламп. Сравнительные данные по лампам для ЗОМ приведены в Таблице 1.
Как видно из данных, приведенных в Таблице 1, светодиодные лампы (СДЛ) имеют значительное преимущество не только перед лампами накаливания, но и энергосберегающими газоразрядными. единственный их недостаток – более высокая цена, которая с ростом их производства будет снижаться. Наиболее распространенные типы светодиодных ламп выпускаются как под напряжение 220В AC, так и под 48В DC. При использовании последних, сокращаются затраты на оборудование, поскольку для их питания не требуется установка дополнительного инвертора DC/AC. Существует несколько вариантов решений по организации питания СДЛ (Таблица 2).
Взвесив все плюсы и минусы, можно прийти к выводу, что оптимальным вариантом является питание СОМ от электроустановки постоянного тока объекта связи. При этом необходимо учесть возможность внесения перенапряжений, возникающих при попадании молнии в высотный объект, что может привести к повреждению оборудования базовых и радиорелейных станций, нарушениям связи. Одним из главных требований к системе светового ограждения является обязательное резервирование электропитания, так как в случае пропадания основного питания высотный объект в темное время суток или в условиях плохой видимости может представлять опасность для летательных аппаратов. Данное требование отражено в Руководстве по эксплуатации гражданских аэродромов Российской Федерации (РЭгА РФ-94).
Важным следствием применения светодиодных ламп, является возможность изменения регламента технического обслуживания – а именно не плановая замена ламп, а замена по факту выхода из строя. Кроме того желательно иметь возможность в любой момент времени определить, какое количество СДЛ из числа установленных на мачте вышло из строя, что позволит принимать решение о срочности замены перегоревших светодиодных ламп. Очевидно, что полностью преимущества перехода на СДЛ в системах светового ограждения могут быть реализованы только при условии применения системы мониторинга их исправности, особенно на удаленных объектах, где постоянный визуальный контроль невозможен.
Задачи защиты цепей питания СОМ и мониторинга состояния заградительных огней были поставлены компанией «Логический Элемент» перед инженерами COMMENG DEVICES, и были реализованы в системе УЗК-СОМ. Комплекс включает в себя два модуля: защиты цепей питания зонового ограждения мачт и контроля потребляемого тока. Рассмотрим некоторые технические решения, заложенные в разработанную систему.
Защита цепей питания
Заранее известные характеристики нагрузки и небольшие токи, потребляемые оборудованием светоограждения, позволили применить высокоэффективную двухкаскадную схему защиты, включаемую в разрыв питающего кабеля. в устройстве реализована схема защиты с дроссельной развязкой, обеспечивающей быстродействие и защиту от высокомощных импульсов тока. зависимости от ожидаемого уровня электромагнитных влияний (высота мачты, количество грозовых дней в году, характеристики объекта связи) могут применяться устройства защиты цепей питания различных классов (УЗЦП-ЗОМ II или III), обязательно входящие в комплекс оборудования.
Мониторинг состояния заградительных огней
Как правило, полный или частичный выход СДЛ из строя сопровождается прекращением или снижением потребления тока, пропорциональным снижению светимости. Воздействие повышенных входных напряжений и высоковольтных импульсов не вызывает в лампах коротких замыканий. Очень важное свойство светодиодных ламп – стабильность потребления тока, при изменении входного напряжения в довольно широких пределах, что обеспечивается установленными в них драйверами тока. таким образом, можно осуществлять мониторинг исправности СДЛ путем измерения потребляемого ими тока. При этом уровень (или уровни), которые указывают о нарушении в работе СОМ, могут выбираться исходя из параметров конкретного объекта. Информация об отключении заданного количества ламп преобразуется в логический сигнал и с помощью контактов оптореле передается в систему мониторинга, имеющуюся на объекте. Принцип контроля довольно прост, однако в условиях реального применения необходимо учитывать различные дополнительные факторы, например, энергопотребление обогревателей плафонов, служащих для предотвращения обледенения. использование аналоговой схемы контроля повышает надежность решения, реализованного в устройстве контроля потребляемого тока УКПТ-ЗОМ.
Модули устанавливаются в стандартный электротехнический корпус (Рис.1), а также могут непосредственно монтироваться на объекте в шкаф или стойку с электрооборудованием.
Полученные характеристики системы защиты и контроля светового ограждения:
– низкое энергопотребление (< 1Вт);
– питание от штатной ЭПУ постоянного тока;
– предотвращение внесения импульсных помех в цепи вторичного электропитания аппаратуры, при перенапряжениях природного (молния) и промышленного характера;
– дистанционный контроль исправности светодиодных ламп;
– выдача сигнала об аварии, как при снижении тока ниже установленного порога, так и при токовой перегрузке;
– автоматическое возвращение в рабочее состояние после прекращения перегрузки;
– возможность двухступенчатой защиты от перенапряжения
– срок службы не менее 40000 часов
– возможность автоматического подключения резервного питания.
В статье в общих чертах описано уже реализованное устройство. настоящее время группа, состоящая из специалистов нескольких предприятий, продолжает работу по усовершенствованию как системы мониторинга светоограждения, так и самих источников света. На базе единых принципов построения, элементной базы, стандартизованных узлов каждому оператору может быть предложено оптимальное для него решение.
Источник: научно-технический производственный журнал «Техника Связи»